Math 315-003Test 3Name_____April 2,3,5, 2004Show relevant work!D. Wright1. State and prove the First Fundamental Theorem of Calculus.

2. Suppose the function $f : \mathbf{R} \to \mathbf{R}$ is continuous. Define $G(x) = \int_0^x (x - t) f(t) dt$ for all x. Prove that G''(x) = f(x) for all x.

3. Describe in words the nth degree Taylor Polynomial for a function f at the point x_0 . Explain why it is uniquely determined.

4. Show the number *e* is irrational

5. Show that the Taylor expansion of $f(x) = \sin(x)$ at $x_0 = 0$ converges for all points x.

6. Suppose that
$$\sum_{k=1}^{\infty} a_k$$
 converges. Show $\lim_{n \to \infty} a_n = 0$.

- 7. Define what it means for a sequence to be Cauchy and show that a convergent sequence is Cauchy.
- 8. Suppose $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$ are series of positive numbers such that $\lim_{k \to \infty} \left(\frac{a_k}{b_k}\right) = \lambda$ and $\lambda > 0$. Show that $\sum_{k=1}^{\infty} a_k$ converges if and only if the series $\sum_{k=1}^{\infty} b_k$ converges.

9. For a number *r* such that
$$|r| < 1$$
, show $\sum_{k=1}^{\infty} r^k$ converges.

10. Does the series
$$\sum_{k=1}^{\infty} \frac{1}{(k+1)\ln(k+1)}$$
 converge? Prove your assertion.